2020 Consumer Confidence Report for Public Water System M E N WSC

This is your water quality report for January 1 to December	31, 2020	For more information regarding this report contact:						
M E N WSC provides surface water from Navarro Mills Re located In Navarro County, Corsicana .	eservoir and Lake Halbert	NameDennis D	Donoho					
		Phone 903-872-	-1899					
		Este reporte incluye in de Ilamar al telefono	nformation importante sobre el agua para tomar. Para asistencia en espa ► Ilol, favor (903) 872-1899.					
Definitions and Abbreviations								
Definitions and Abbreviations	The following tables contain scientific terms and measu	s, some of which may	require explanation.					
Action Level:	The concentration of a contaminant which, if exceeded	triggers treatment or	other requirements which a water system must follow.					
Avg:	Regulatory compliance with some MCLs are based on	nning annual average	of monthly samples.					
Level 1 Assessment:	A Level 1 assessment is a study of the water system to I water system.	ntify potential problen	ns and determine (if possible) why total coliform bacteria have been found in our					
Level 2 Assessment:	A Level 2 assessment Is a very detailed study of the wat and/or why total coliform bacteria have been found in or	system to identify pot water system on multi	ential problems and determine (if possible) why an E. coli MCL violation has occurred ple occasions.					
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drin	ng water. MCLs are se	t as close to the MCLGs as feasible using the best available treatment technology. The					
Maximum Contaminant Level Goal or MCLG:	level of a contaminant in drinking water below which the	is no known or expec	ted risk to health. MCLGs allow for a margin of safety.					
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking w contaminants.	er. There is convincin	g evidence that addition of a disinfectant is necessary for control of microbial					
Maximum residual disinfectant level goal or MRDLG:	The level of a drinking water disinfectant below which the microbial contaminants.	is no known or expect	ed risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control					
MFL	million fibers per liter (a measure of asbestos)							
mrem:	millirems per year (a measure of radiation absorbed by	e body)						
na:	not applicable.							
NTU	nephelometric turbidity units (a measure of turbidity)							
pCi/L	plcocuries per liter (a measure of radioactivity)							

Definitions ana Aooreviations

ppb:	micrograms per liter or parts per billion
ppm:	milligrams per liter or parts per million
рра	parts per quadrillion, or picograms per liter (pg/L)
ppt	parts per trillion, or nanograms per liter (ng/L)
Treatment Technique or TT:	A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

M E N WSC purchases water from CITY OF CORSICANA. CITY OF CORSICANA provides purchase surface water from **Navarro Mills Reservoir and Lake Halbert** located in **Navarro County, City of Corsicana.** [insert a table containing any contaminant that was detected in the provider's water for this calendar year, unless that contaminant has been separately monitored in your water system (Le. TRIM, HAAS, Lead and Copper, Coliforms)].

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact (insert water system contact Dennis Donoho, 903-875-1899.

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum li .le . I PIM	Highest No. of Positive	Fecal Coliform or E. Coll Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample.	3		0	Z	Naturally present in the environment.

Lead and Copper	Date Sampled MCLG		Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination	
Copper	08/23/2019	1.3	1.3	0.23	0 ppm		Ν	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing c.ctargs	
Lead	08/23/2019		0	3.6	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.	

The Texas Commission on Environmental Quality (TCEQ) has reviewed the Level 1 Assessment and associated documents triggered on November 24, 2020 and required to be submitted to TCEQ by December 25, 2020. The TCEQ has reviewed the assessment against the requirements of 30 Texas Administrative Code (TAC) §290.109(c)(3) and determined it to be complete.

M E N WSC, public water system (PWS) ID NO. 1750015, should review the attached Corrective Action Report anti Plan (CARP) and work to resolve the additional corrective action(s) and/or best management practice(s) before the next Comprehensive Compliance Investigation (CCI). The Level 1 Assessment did not identify any sanitary defects at your PWS. At this time your PWS is not required to submit any additional information about this assessment. Please refer to the attached CARP for additional details.

2020 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAAS)	2020	23	5 - 31	No goal for the total	60	ppb	Ν	By-product of drinking water disinfection.
*The value in the Highest Level or	Average Detected colu	umn is the highest aver	age of all HAAS sample	e results collected at	a location over a ye	ear		
Total Trihalomethanes (TTHM)	2020	49	28.6 - 57.8	No goal for the total	80	ppb	Ν	By-product of drinking water disinfection.

*The value In the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen)	2020	0.402	0,215 - 0.402	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Disinfectant Residual

A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chloramines	2020	1.68	0.1- 4.0	4	4	mg/i	n	Water additive used to control microbes.

	Detected Regula	ted Conta	minates for 20	20
EP2 Lake Halbert				
SOC Pesticide	Detected Quantity	MCL	Date Collected	Analytical Method
Atrazine	0.1 ug/I	N/A	1/23/2020	'- E525.2GC/MS
VOC's	Detected Quantity	MC/L	Date Collected	Analytical Method
Acetone	5.09 ug/I	N/A	9/24/2020	E524.2 GC/MS
Chloroform	31.5 ugh	 N/A	9/24/2020	E524.2 GC/MS
Bromodichloromethane	19.3 ug/I	N/A	9/24/2020	E524.2 GC/MS
Dibromochloromethane	4.91 ug/I	N/A	9/24/2020	E524.2 GC/MS
Inorganics				
Chloride	10.5 mg/I	300.0 mg/I	1/23/2020	E300.0 Anions
Fluoride	0.520 mg/I	4.0 mg/I	1/23/2020	E300.0 Anions
Nitrate (as N)	0.189 mg/I	10.0mg/I	1/23/2020	E300.0 Anions
Sulfate	69.7 mg/I	300.0 mg/I	¹ /2 3/2020	E300.0 Anions
Total Dissolved Solids	228 mg/I	1000.0 mg/I	1/23/2020	SM2540C
Inorganics	_			
Metals Trace Elements				
Calcium Total	41.2 mg/I	N/A	1/23/2020	E200.7 Metals, Trace
Potassium Total	4.59 mg/I	N/A	1/23/2020	E200.7 Metals, Trace
Magnesium	5.49 mg//	N/A	1/23/2020	E200.7 Metals, Trace
Sodium Total	21.8 mg/I	N/A	1/23/2020	E200.7 Metals, Trace
E200.8 ICP-MS				
Aluminum Total	0.022 mg/I	0.2 mg/I	1/23/2020	E200.8 IC-MS
Barium Total	0.048mg/I	2.0 mg/I	1/23/2020	E200.8 IC-MS
Chromium Total	0.0015 mg/I	1.3 mg/I	1/23/2020	E200.8 IC-MS
Copper Total	0.0019 mg/I	1.3 mg/I	1/23/2020	E200.8 IC-MS

DETECTED REGULATED CONTAMINATES FOR 2020

EP1 Navarro Mills				
SOC Pesticide	Detected Quantity	MCL	Date Collected	Analytical Method
Atrazine	0.2ug/l	N/A	¹ / ₃ 0/2020	• E525.2 GC/MS
Metolachlor	0.1 ug/l	N/A	1/30/2020	E525.2 GC/MS
VOC's				
Acetone	5.43 ug/1	N/A	9/24/2020	E524.2 GC/MS
Chloroform	29.2 ug/l	N/A	9/24/2020	E524.2 GC/MS
Bromodichloromethane	17.4 ug/1	N/A	9/24/2020	E524.2 GC/MS
Dibromochloromethane	4.61 ug/1	N/A	9/24/2020	E524.2 GC/MS
Inorganics				
Chloride	12.8 mg/l	300.0 mg/l	1/2 4/2020	E300.0 Anions
Fluoride	0.620mg/l	4.0 mg/l	1/24/2020	E300.0 Anions
_ Nitrate (as	0.0962 mg/l	10.0mg/l	1/24/2020	E300.0 Anions
Sulfate	44.3 mg/l	300.0 mg/l	1/24/2020	E300.0 Anions
Total Dissolved Solids	186 ma/l	1000.0 ma/l	1/24/2020	SM2540C
		g,		
Metals Trace Elements				
Calcium	42.4 mg/l	20,000.0 mg/l	1/24/2020	E200.7 Metals, Trace
Potassium	3.65 mgll	20,000.0 mg/1	1/24/2020	E200.7 Metals, Trace
Magnesium	2.72 mg//	20,000.0 mg/l	1/24/2020	E200.7 Metals, Trace
Sodium Total	19.8 mg/l	20,000.0 mg/l	1/24/2020	E200.7 Metals, Trace
E200.8 ICP-MS				
Aluminum Total	0.029 mg/l	0.2 mg/l	1/24/2020	E200.8 IC-MS
Barium Total	0.044mg/l	2.0 mg/l	1/24/2020	E200.8 IC-MS
Chromium	0.0011 mg/l	1.3 mg/l AL	1/23/2020	E200.8 IC-MS
Copper Total	0.0010mg/l	1.3 mg/I AL	1/24/2020	E200.8 IC-MS
Manganese Total	.0024mg/l	0.05 mg/l	1/24/2020	E200.8 IC-MS
Nickel Total	.0011mg/l	.1 mg/l	1/24/2020	E200.8 IC-MS

	Turbidity and TOC 2020														
Navarro N	Mills								Lake Hal	bert					
		NTU				TOC		NTU							
Month	Average	Highest	%	Raw	Tap	% Removal	%	Month	Average	Highest	%Compliance	Raw TOC	Tap TOC	% Removal	% Compliance
			Compliance	TOC	TOC		Compliance								
Jan	0.08	0.14	100	3.6	2.9	I 9A	88	Jan	<u>0.05</u>	0.11	100	4.67	3.22	<u>31.0</u>	<u>100</u>
Feb	0.08	0.14	100	3.84	<u>2.58</u>	<u>32.8</u>	131	Feb	<u>0.06</u>	0.13	100	4.39	<u>2.70</u>	<u>38.5</u>	110
Mar	0.07	<u>0.15</u>	100	4.03	<u>2.55</u>	<u>36.7</u>	105	Mar	<u>0.05</u>	<u>0.13</u>	<u>100</u>	<u>4.36</u>	<u>2.73</u>	<u>41.0</u>	117
Apr	<u>0.06</u>	<u>0.11</u>	100	<u>3.93</u>	<u>2.58</u>	<u>34.4</u>	137	<u>Apr</u>	<u>0.06</u>	<u>0.17</u>	<u>100</u>	4.5	<u>2.90</u>	<u>35.6</u>	102
May	0.09	0.18	100	3.86	2.74	29.0	193	May	0.06	0.13	100	4.44	3.00	32.4	214
Jun	0.07	0.12	<u>100</u>	4.03	2.6	<u>35.5</u>	101	Jun	0.05	0.11	100	<u>3.87</u>	<u>2.48</u>	<u>35.9</u>	<u>144</u>
Jul	0.07	0.16	100	3.4	2.41	<u>29.1</u>	116	Jul	0.05	0.22	100	<u>3.36</u>	2.24	33.3	133
Aug	0.09	0.15	100	3.67	2.57	<u>30.0</u>	120	Aug	0.04	0.08	100	3.63	2.25	<u>38.0</u>	152
Sep	0.08	0.14	100	3.88	2.79	28.1	<u>112</u>	<u>Sep</u>	0.04	0.15	100	<u>3.73</u>	2.30	<u>38.3</u>	<u>153</u>
Oct	0.08	0.26	100	<u>3.86</u>	2.9	<u>24.9</u>	99	Oct	0.04	0.07	100	<u>3.84</u>	<u>2.38</u>	<u>38.0</u>	152
Nov	0.08	0.14	100	<u>3.81</u>	<u>2.99</u>	<u>21.5</u>	100	Nov	0.04	0.08	100	<u>3.95</u>	<u>2.46</u>	<u>37.7</u>	<u>151</u>
Dec	<u>0.06</u>	<u>0.14</u>	<u>100</u>	3.94	<u>3.14</u>	<u>20.3</u>	100	Dec	<u>0.05</u>	0.15	100	<u>3.98</u>	<u>2.58</u>	35.2	141
Average	0.08			3.82	2.73	28.5	116.8		0.05			4.08	2.60	36.3	139.1
			NTU	Raw	Tap	% Removal									
				; 1'OC	TOC										
Average			0.06	<u>3.95</u>	<u>2.67</u>	<u>32.4</u>									
Both															
Plants															